
 

 

Unflappable Fabrics: Ending 
Link-Induced Chaos in GPU Clusters 
Artificial intelligence (AI) is rapidly moving from specialized research to mainstream applications reshaping 
entire industries. Modern AI workloads demand unprecedented scale, performance, and reliability from GPU 
clusters. Yet as clusters grow to thousands of GPUs and tens of thousands of links, one bottleneck emerges 
again and again: network fragility. Network failures, link flaps, and network misconfigurations erode training 
efficiency, forcing job restarts and burning valuable GPU hours. This paper examines the true cost of network 
failures and introduces a new architectural approach - rooted in real-time telemetry and software-driven 
resilience - to ensure AI workloads keep moving, even when the network doesn’t. 

Network Failures Contribute to Poor GPU Cluster Utilization 
AI training clusters represent a formidable infrastructure expenditure, and every lost hour amounts to tens of 
thousands of dollars. This is not a theoretical concern since actual FLOPs (Floating Point Operations per 
Second) utilization during large-scale AI training often ranges between 15% and 40%.   

One of the dominant culprits is communication overhead, particularly in distributed training. Large AI models - 
especially transformer-based architectures - require frequent synchronization across GPUs for operations like 
gradient aggregation. As GPU counts grow into the thousands, any delays in synchronization due to network 
bottlenecks cause thousands of GPUs to be idle, waiting for the stragglers. Three network pathologies 
consistently outweigh all others in the amount of GPU time they waste: 

1.​ Cross-job congestion and contention. Multi-tenant clusters run dozens of jobs whose “elephant” collective 
flows collide on the same links; incast hotspots stall every rank that has to enter the next All-Reduce. 

2.​ Network failures. Short-lived link flaps, optic resets, or bursty bit-error episodes act like micro-outages, often 
causing job crashes and restarts. 

3.​ Misconfigurations and bugs, including topology & placement mismatch. Incorrect ECN/PFC thresholds, 
buggy switch images, or schedulers that scatter jobs across extra spine hops are examples of 
misconfigurations that chip away at utilization. 

The rest of this document focuses on transient network failures, their impact on overall cluster GPU utilization, 
and the Clockwork FleetIQ platform approach to mitigating the adverse impact of such transient network 
failures. 

 



 

Characterizing Network Failures 
Modern AI training clusters push networking to extreme scale, and the raw component count alone makes 
“zero-fault” operation statistically impossible. For instance, NVIDIA’s DGX SuperPOD reference architecture 
shows that a cluster of 8,192 GPUs needs 256 leaf switches, 256 spine switches, 
~25,000 links and ~50 k optical transceiver modules. Alibaba reported1 that 
nearly 60% of their large-scale training jobs experience slowness in production. 
Meta2 reported 466 job restarts during their 54-day Llama 3 training, averaging 
8.6 times per day. 

Network-related disruptions in large-scale GPU clusters fall broadly into three 
categories: hardware failures, disruptive link flaps and self-healing link flaps. 
While each of these manifests differently, only the former two - hardware failures 
and disruptive flaps - result in job restarts. 

1.​ Hardware failures stem from physical component degradation — such as failed optical transceivers or 
switch crashes. Based on Telcordia SR-332 specifications and production cluster data from Alibaba, 
NIC-to-leaf switch links fail at a rate of 0.68% per year, while ToR switches experience critical failures at 
0.61% per year. In practical terms, this equates to approximately one hard link failure per week in a 
1,000-GPU cluster, each of which can disrupt in-progress training jobs. 

2.​ Disruptive link flaps are short-lived 
disruptions where a link temporarily 
drops and is unable to recover or 
resolve the loss of connectivity 
automatically. Experience from 
hyperscalers like Meta and 
Microsoft shows that a cluster of 
8,000 GPUs may experience 5–20 
link flaps per day and ~15% of all 
flaps are disruptive, requiring 
manual intervention - such as cleaning or reseating optics - and can persist for tens of minutes. During 
this time, collective operations stall, causing timeouts and ultimately forcing the job to restart from its 
last checkpoint. In a 1,000-GPU cluster, these disruptive flaps lead to 1–4 job-impacting events per 
week. 

3.​ Self-healing link flaps are short-lived disruptions where a link temporarily drops and then recovers 
automatically, often within a few seconds. These are typically caused by transient bit errors or marginal 
signal integrity, and roughly 85% of link flap events self-resolve within the timeout limits of collective 
communication libraries like NCCL, meaning jobs continue unaffected. Short flaps don't crash a job 
because the NIC retransmits packets up to 7 times after the IB_TIMEOUT elapses, allowing the link to 
self-heal. 

When viewed together, hardware failures and disruptive flaps form the dominant source of job restarts in 
large-scale AI training clusters. They contribute to an aggregate annual rate of 0.1 to 0.25 disruptive outages 
per GPU, with each event potentially causing the loss of hundreds to thousands of GPU-hours.  



 

Translating Disruptive Network Failures and Flaps Into Lost GPU Hours 
When a disruptive link failure causes an outage that lasts longer than the time-out limits of collective 
communication libraries, the training job needs to be restarted. The job must be restarted from the most recent 
consistent saved state, which is the last checkpoint. Consequently, the time spent training across all the 
involved GPUs since that last checkpoint, along with the time taken to recover, represents the GPU hours lost. 

The estimation of GPU hours lost due to a job restart involves several interconnected parameters. These 
primarily include the frequency at which checkpoints are saved, the time required to recover from the most 
recent checkpoint, and the total number of GPUs actively participating in the training job. 

●​ Checkpointing frequency of 2-4 hours results in a loss of 1-2 hours per disruptive link failure. The 
choice of checkpointing frequency involves a critical trade-off. More frequent checkpointing reduces the 
amount of computation that needs to be redone if a failure occurs, but it also introduces overhead 
because of the time taken to save the model's state to storage, potentially stalling the GPU computation. 
In their paper3, Alibaba benchmarks typical 
checkpointing intervals for four production LLMs of 
between 2 and 4 hours, which seems to be a good 
representative checkpointing frequency.  Given this 
checkpointing frequency, a disruptive link failure causes 
a loss of 1-2 hours (mid-point of the checkpoint interval) 
across all the GPUs allocated to the job. 

●​ Recovery time adds an additional 10-30 minutes of lost 
time per disruptive link failure. Recovery from 
checkpoint involves retrieving the checkpoint data from 
the storage system and then loading the model parameters and optimizer states back onto the GPUs to 
resume the training process. While this also depends on the size of the model, the performance of the 
storage system and the network bandwidth, recovery time has been benchmarked in numerous studies 
to range between 10 and 30 minutes, when all the GPUs allocated to the job are unproductive. 

●​ Individual jobs have a wide range of GPUs allocated, that are idled by disruptive link failures. GPU hours 
lost due to a restart is directly proportional to the number of GPUs that were allocated to the interrupted 
job, which is frequently less than the total number of GPUs available in the cluster, as multiple training 
jobs run concurrently.  The number of 
GPUs allocated per job is a wide range - 
dozens of GPUs for fine-tuning and 
recommendation systems to several 
hundreds of GPUs for autonomous vehicle 
training or protein folding in drug discovery 
to thousands of GPUs in large language 
models. To estimate the impact of 
disruptive link failures in GPU clusters of 
hundreds to thousands of GPUs, we 
assume a range of 256-1000 GPUs 
allocated per impacted job. 

Putting the data together, the cumulative GPU hours lost due to each disruptive link failure ranges between 
~500 GPU hours to ~1500 GPU hours. This depends on the three main factors described in this section - 
checkpointing frequency, time to restore from checkpoints and number of GPUs allocated to training jobs. 



 

Business Impact Of Disruptive Network Failures 
In clusters of 1,000 GPUs or more, network disruptions leading to job restarts can have significant and 
measurable business impact - in wasted compute cycles, delayed training schedules and lost engineering 
productivity.   

1.​ Direct financial impact of lost GPU hours is $250,000 to $750,000 annually in a 1000 GPU cluster. 
Network-induced job failures typically force AI workloads to restart from the last checkpoint, discarding 
all progress made since that point. As outlined in the previous section, a 1,000-GPU cluster can 
experience 100 to 250 such events per year resulting in 500 to 1,500 GPU-hours lost per event, depending 
on the checkpointing frequency and recovery latency.  When multiplied by an estimated $3 GPU-hour, the 
resulting financial loss from idle GPUs alone ranges from $250,000 to $750,000 annually. These figures 
represent tangible, invoice-visible costs directly tied to underutilized compute resources.  

2.​ Lost engineering productivity of ~$250,000 - 300,000 annually in a 1000 GPU cluster, and frustration! 
Each incident of network disruption triggers a cascade of operational activity: incident triage, root cause 
analysis, corrective action (such as optic cleaning or replacement), and cluster revalidation. On average, 
each event consumes 2 to 4 hours of engineering time, impacting 4 - 6 people across infrastructure and 
data science teams. At 100 to 250 disruptive events per year in a 1000 GPU cluster, this translates to 
2000 - 2400 staff-hours per year even using conservative estimates, and does not account for the added 
coordination overhead or emotional fatigue. Persistent failures introduce operational friction - delayed 
handoffs, blame cycles, and reduced morale - that further degrade team efficiency. 

3.​ Time to output (e.g., model updates). Disruptions also affect “time to output” - the time it takes to 
complete model training and move new models into production. Further, aggressive checkpointing, while 
reducing lost computation, can introduce I/O bottlenecks that directly impact the "wall clock time". 
delayed model deployment can translate into deferred feature releases, postponed product launches, and 
ultimately, reduced business agility. . 

Disruptive link flaps and network failures represent more than just transient technical glitches - they carry a 
heavy operational and financial burden. In a 1,000-GPU cluster, the combined effect of wasted GPU-hours, lost 
engineering productivity, and delayed time-to-market can result in $500,000 to $1 million in direct financial 
impact, even before accounting for long-term erosion in team performance and model development velocity. 

Clockwork's Software-Driven Fabric Architecture Enables Resilient AI 
Workloads 
Clockwork's mission is to "Accelerate AI with fast, functional fabrics". Clockwork’s Software‑Driven Fabric (SDF) 
architecture leverages software instead of proprietary hardware to deliver resilience, determinism, and superior 
price-performance. 

Two innovations form the foundation of Clockwork's FleetIQ platform: 

1.​ Clockwork’s Global Clocksync aligns every node’s internal clock, across thousands of machines, to 
within nanoseconds, using a lightweight, peer-to-peer probe mesh and applying machine learning and 
graph optimization to achieve near-perfect synchronization. The result is tens of thousands of nodes - 
within a data center or across regions - operating on a unified nanoseconds-accurate timeline and 
serving as the foundation for ultra-dense telemetry fabric. Infrastructure teams can use Clockwork’s 
dashboards and APIs to monitor fabric health and job progress with great precision in real time. 



 

2.​ Dynamic Traffic Control (DTC) manages network traffic in real-time purely through software. DTC 
automatically optimizes paths, mitigates congestion, and quickly adapts to network disruptions without 
manual intervention. Through integrations like NCCL plugins, it can steer queue pairs, reroute collective 
operations, or optimize message distribution across the fabric. Because DTC is software-based, it works 
seamlessly across diverse hardware setups - multi-vendor Ethernet networks, Infiniband networks or 
RoCE deployments, supporting compute clusters powered by NVIDIA, AMD, and other accelerators. 

Building on these foundational building blocks, Clockwork delivers workload resilience through Workload 
Failover - a key part of its FleetIQ platform. Workload Failover is designed specifically to shield distributed 
training jobs from the impact of 
disruptive link failures. Workload 
Failover introduces a new class of 
failure-handling logic: one that is 
job-aware, path-sensitive, and 
recovery-optimized. When a path 
degrades beyond usable thresholds - 
whether due to optic resets, 
hardware failures or localized switch 
faults - Clockwork dynamically 
reassigns active queue pairs to 
alternate paths, maintaining the 
integrity of collective communication 
groups. Rather than restarting jobs when the fabric misbehaves, Workload Failover ensures forward progress 
continues, and when the network heals, jobs rebound automatically to full speed. This “graceful degradation” 
model transforms job reliability from a binary outcome (fail or succeed) into a spectrum where small faults 
trigger small slowdowns - not catastrophic resets. 

A picture speaks a thousand words!  The attached screenshot from a demo of Workload Failover illustrates the 
impact of a NIC failure without Workload Failover - the job dies until it is restarted.  With Clockwork's Workload 
Failover deployed, the throughput of the job decreases by ~15% when the NIC fails as the traffic is rerouted to 
leverage healthy NICs - no job restart needed! The job subsequently fails back with no degradation in throughput 
as soon as the failed NIC is reconnected. 

Clockwork's Vision 
Disruptive network failures have become an expensive and pervasive threat to large-scale AI training, draining 
hundreds of thousands of GPU hours, eroding engineering productivity, and stalling time-to-insight. Yet this 
fragility is not inevitable. Clockwork’s software-driven fabric architecture - anchored by nanosecond-accurate 
clocksync, real-time traffic control and resilient workload failover - transforms the way GPU clusters handle 
failures. Instead of halting jobs, Clockwork enables clusters to absorb, adapt, and advance. As AI infrastructure 
scales toward ever-larger models and tighter timelines, resilience isn’t just a feature—it’s a foundation. 
Clockwork makes that foundation real, replacing failure-induced chaos with consistent, confident progress. 
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6.​Estimated averages: ~1 - 2 infrastructure engineers, 3 - 4 data scientists lose 3 hours per event (troubleshooting, remedy, fleet preparation for restarts), 

with 100-250 events per year in a 1000-GPU cluster; average FTE cost to company of $250K 
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