
 

Closing the AI Networking 
Visibility Gap 
Artificial intelligence (AI) is rapidly moving from specialized research to mainstream applications 
reshaping entire industries. Modern AI workloads demand unprecedented scale, performance, and 
reliability from GPU clusters. Yet as clusters grow to thousands of GPUs and tens of thousands of 
links—interconnected by high-performance networks like InfiniBand or RoCE—network fragility has 
emerged as a persistent bottleneck. 

To meet these demands, AI network observability must go beyond basic monitoring. It must address 
both failures (e.g., link flaps, NIC faults, misconfigurations) and performance issues (e.g., congestion, 
contention, path asymmetry). This requires real-time, fabric-level visibility, fine-grained latency and jitter 
metrics, and the ability to correlate network anomalies directly to job-level symptoms like slowdowns or 
restarts. 

This white paper introduces Clockwork Software-Driven Fabrics, a new approach designed to close the 
AI networking visibility gap and significantly boost performance and reliability at scale. 

Network Failures and Performance Issues Contribute to Poor GPU 
Cluster Utilization 

AI training and large-scale distributed inference have fundamentally reshaped the performance 
demands on data center networks. State-of-the-art models such as GPT, Gemini, and LLaMA use 
sophisticated forms of parallelism, where each GPU computes gradients during the forward and 
backward pass, followed by collective operations (typically AllReduce) to synchronize weight updates 
across all replicas. These workloads generate highly bursty traffic, leading to flow collisions during 
NCCL operations (e.g., all‑reduce or all-to-all operations) or during simultaneous inference bursts.  

This traffic pattern drives up latency, reduces throughput, and directly impacts job completion times 
and token streaming performance. As a result, AI workloads are not only compute-intensive but also 
tightly synchronized and communication-bound. 

Despite advances in hardware and cluster architecture, effective Model FLOPs Utilization (MFU) has 
stalled around 35–40%, largely due to communication bottlenecks and intermittent network failures. 

 



 

Even brief network slowdowns can leave thousands of GPUs idle, waiting on stragglers–turning minor 
hiccups into substantial operational inefficiencies and slower iteration cycles.  

A key challenge exacerbating these issues is the visibility gap: engineering and infrastructure teams 
lack real-time insights into network connectivity, path quality, or message-level performance across 
GPU clusters. Critial Metrics such as per-link throughput and per-job latency are often inaccessible or 
fragmented across tools. As a result, network problems often go undetected until they cause degraded 
job throughput or failures. This limited visibility hinders root cause analysis, extends mean time to 
recovery (MTTR), and forces teams into a reactive posture—reducing overall system efficiency and 
GPU utilization. 

Common Runtime Network Issues in GPU Clusters 

In multi-GPU clusters, networking problems can severely impact job completion time. Key runtime 
issues include: 

●​ Network Misconfigurations: Slight misconfigurations in an InfiniBand or RoCE fabric (e.g. 
incorrect subnet manager settings, missing flow-control settings) can degrade the entire 
system’s performance. For example, mis-tuned Priority Flow Control (PFC) or ECN on a RoCE 
network can lead to unexpected packet loss or stalls. InfiniBand’s complexity means that any 
configuration mistake (MTU mismatches, wrong routing table, etc.) may create bottlenecks or 
instabilities. These misconfigs often go unnoticed until training performance drops significantly.​
 

●​ Link Flaps and Failures: Physical link failures or flapping connections are among the most 
common problems in large GPU clusters. In practice, InfiniBand error codes like “Link downed” 
or “Link went down” (UFM 
error codes 112 and 329) are 
red flags often associated 
with training crashes. 
Experience from 
hyperscalers like Meta and 
Microsoft shows that a 
cluster of 8,000 GPUs may 
experience 5–20 link flaps 
per day and ~15% of all flaps 
are disruptive, requiring manual intervention - such as cleaning or reseating optics - and can 
persist for tens of minutes. During this time, collective operations stall, causing timeouts and 
ultimately forcing the job to restart from its last checkpoint. In a 1,000-GPU cluster, these 
disruptive flaps lead to 1–4 job-impacting events per week. ​
 

●​ Congestion Hotspots and Incast: AI workloads produce bursty, synchronized traffic (e.g., during 
AllReduce), often converging on shared links and causing incast congestion. Meta’s experience 
with RoCE clusters showed that uneven traffic distribution can degrade training performance by 



 

>30% due to congested uplinks . Even in a fat-tree InfiniBand network advertised as 
non-blocking, congestion can occur transiently if adaptive routing isn’t perfect. These 
congestion hotspots manifest as longer communication times (e.g. all-reduce taking much 
longer than expected) and thus slower training iterations.​
 

●​ Path Asymmetry and Load Imbalance: Large fabrics use multipath routing (e.g., ECMP in 
Ethernet or InfiniBand lanes) to spread traffic. However, if routing is suboptimal, you get path 
asymmetry – some routes carry heavier load or have higher latency than others. Meta’s early 
RoCE deployments using static flow pinning saw one uplink saturated while others idled, leading 
to 30% slowdowns. Failures exacerbate the issue, as re-routed flows often collide on the same 
backup path. In InfiniBand, which traditionally uses static routing tables, similar imbalances can 
occur if the subnet manager’s routing algorithm isn’t tuned for the workload pattern (trees or 
rings in collective communication). These asymmetries turn some GPUs into stragglers, 
delaying the entire job.​
 

●​ NCCL Timeout Errors: NCCL (NVIDIA Collective Communications Library) timeout errors are 
notoriously difficult to diagnose, with broad impact across the system stack and root causes 
that are often transient. Due to the asynchronous nature of CUDA execution, failures may not 
surface immediately, obscuring their origin. Transient link errors—caused by brief network 
congestion, hardware glitches, or environmental factors—are hard to reproduce and debug. 
Making matters worse, NCCL errors often lack granular logs, offering little insight into which 
rank or node triggered the failure, further complicating resolution. 

Four Visibility Gaps in AI Networking: Challenges with Today’s 
Monitoring Tools 

Despite the prevalence of network-induced slowdowns, most GPU cluster operators have limited insight 
into when and where these network issues strike. Traditional monitoring tools tend to focus on node 
health (CPU, GPU errors, memory, etc.) and basic network pings, but they do not capture the nuanced 
performance of the network fabric under load. In practice, many network problems are discovered only 
after they have impacted a job. 

The four primary observability gaps in AI networking are: 

1.​ Delayed Detection and Diagnosis:  Many network issues—such as link flaps, port errors, or NIC 
failures—are only detected after they’ve already degraded performance or caused job failures. 
InfiniBand fabrics often log these faults after a job has stalled or crashed. As SemiAnalysis 
points out, critical alerts like port health warnings typically arrive too late to prevent disruption. 
The default NCCL watchdog timeout (~30 minutes) allows jobs to hang silently, wasting 
compute resources before being aborted. Worse, slowdowns caused by silent 
degradations—such as link congestion or symbol errors—rarely trigger alerts because traffic 
continues to flow, albeit inefficiently. In real incidents, jobs have run for hours at up to 10% 
reduced speed due to a single congested link—completely unnoticed by standard monitoring. 



 

 

2.​ Limited and Fragmented Visibility Across the Stack: Existing monitoring tools operate in silos 
and offer only partial insights. For example, NVIDIA DCGM provides detailed GPU telemetry but 
lacks visibility into NICs or fabric health. Meanwhile, network tools like UFM or NetQ monitor 
switches and links but have no awareness of which jobs are using which resources. In-band and 
out-of-band data are often isolated, making correlation difficult. These gaps are especially 
pronounced in multi-vendor or hybrid environments. InfiniBand UFM offers rich telemetry but is 
proprietary and difficult to integrate with open-source dashboards. Many operators forego it 
entirely, relying on scripts and manual checks that are error-prone and hard to scale. NetQ works 
well for Ethernet, but InfiniBand users are left with fragmented solutions like OpenSM.  
Full-system observability—spanning GPUs, NICs, switches, and fabric software—remains 
elusive. 

 

3.​ Lack of End-to-End Job-to-Network Correlation: Current observability tools fail to connect 
network-layer anomalies with job-level symptoms like slowdowns, retries, or failures. Fabric 
managers can track traffic patterns but lack visibility into which jobs are affected. Conversely, 
GPU telemetry tools like NVIDIA DCGM offer no insight into the underlying network paths or 
issues. 

This disconnect forces engineers to manually correlate job stalls—such as degraded all-reduce 
performance or NCCL retries—with switch logs, port statistics, or congestion metrics. In many 
cases, the root cause is far removed from where the symptom appears. A NIC or NVLink fault 
may stall a job several hops downstream, with no clear error message.  Without GPU-to-GPU 
visibility across NICs, switches, and fabric software, root cause analysis becomes slow, 
error-prone, and operationally expensive.​
 

4.​ Limited Congestion Awareness and Root Cause Resolution: Current tools struggle to 
differentiate between congestion, hardware degradation, and topology imbalances—despite all 
presenting similar symptoms like slow traffic, packet loss, or retransmissions. For example, 
InfiniBand may report retransmissions due to credit timeouts, but these can result from either 
transient congestion or persistent hardware faults, making diagnosis ambiguous.  

Most tools only provide per-link aggregate counters, lacking directional or per-flow insights. This 
makes it difficult to detect asymmetric paths or pinpoint specific bottlenecks. Short-lived or 
bursty congestion often goes undetected by coarse sampling intervals (e.g., 30-second 
Prometheus scrapes). Without high-resolution, correlated in-band and out-of-band telemetry, 
distinguishing between temporary saturation and persistent failure becomes 
guesswork—leading to delayed mitigation and unreliable job performance. 



 

Business Impacts of Visibility Gap 

Long Response Time and Manual Interventions: Visibility gaps make mitigation harder. When the root 
cause of a slowdown is unclear, teams often resort to checkpointing and restarting jobs—hoping the 
issue was transient or that new nodes will perform better. This trial-and-error approach is inefficient. 
Meta’s LLaMA 3 logs reported 419 unexpected job interruptions over 54 days, with 8.4% linked to 
network switch or cable issues. While most were resolved through automation, complex cases still 
required manual debugging—highlighting how difficult pinpointing failures can be, even for top AI 
teams. Each manual intervention means idle GPUs and lost time, directly impacting job completion and 
cluster efficiency.​
 

Lost Productivity, Wasted Spend, and Delayed Time-to-Market: Poor network visibility directly 
translates into wasted spend. When GPUs sit idle due to undetected slowdowns, organizations pay for 
compute they’re not effectively using—while still incurring power and rental costs. Industry analysts 
estimate that GPU underutilization from orchestration and networking bottlenecks is a multi-billion 
dollar problem. For example, if half a cluster’s capacity waits on data, that’s a 50% hit to ROI. Training 
delays also carry opportunity costs—slower model delivery, reduced experimentation, and longer 
time-to-market. Meanwhile, engineering teams lose productivity firefighting crashes and slowdowns. 
Many compensate by over-provisioning GPUs or adding conservative checkpoints—workarounds that 
further inflate cost and complexity. 

In summary, existing tools leave a significant observability gap—critical network metrics and failure 
signals aren’t surfaced in real time to the teams that need them. This leads to technical inefficiency, 
wasted compute, and lost time. Closing this gap could unlock major gains: higher GPU utilization, faster 
job completion, and greater confidence in large-scale training. That’s the core motivation behind 
Clockwork’s software-driven fabric approach—designed to deliver end-to-end visibility and control 
across the GPU networking stack. 

The remainder of this document explores how Clockwork’s FleetIQ platform addresses the visibility gap 
by delivering fine-grained, real-time network insights through a combination of out-of-band and in-band 
telemetry. 

 

Clockwork Software-Driven Fabrics 

Clockwork's mission is to "Accelerate AI with fast, functional fabrics". Clockwork’s Software‑Driven 
Fabric (SDF) architecture leverages software instead of proprietary hardware to deliver resilience, 
determinism, and superior price-performance. 

Instead of treating the network as a static, best-effort medium, Clockwork instruments it in software to 
achieve two key capabilities: (a) fleet-wide active monitoring of network health via an out-of-band probe 
mesh, and (b) in-band telemetry and optimization of actual workload traffic. These twin components 



 

work together to close the visibility gap and enhance reliability and performance. Importantly, 
Clockwork’s solution is 100% software-based – it does not require specialized hardware or proprietary 
network modifications . It runs on standard Ethernet (RoCE) or InfiniBand networks, scaling from 
modest clusters to ultra-large supercomputers. 

This capability is powered by breakthrough research in software-based clock synchronization and 
techniques for inferring queueing dynamics from edge data. At its core, Clockwork’s Global Clocksync 
solution aligns every node’s internal clock to within nanoseconds, using a lightweight, peer-to-peer 
probe mesh and applying machine learning and graph optimization to achieve near-perfect 
synchronization. The result is tens of thousands of nodes - within a data center or across regions - 
operating on a unified nanoseconds-accurate timeline! 

Because every host now shares a common timeline, the same probe mesh doubles as the foundation 
for ultra-dense telemetry fabric. Infrastructure teams can use Clockwork’s dashboards and APIs to see 
the fabric from two angles at once: monitoring everything from fabric health during provisioning to 
per-job efficiency in production, raising the right alert - link, node or workload - before users notice a 
slowdown. 

Fleet Monitoring (Out-of-Band Probe Mesh) 

Clockwork deploys an out-of-band probe mesh through 
lightweight agents running on each node. These agents 
continuously measure one-way delays (OWDs) between NIC 
pairs, forming a real-time view of network health without 
interfering with workload traffic. This probe mesh offers 
fine-grained insights into: 

●​ Network Topology: Measured OWDs are used to 
construct a dynamic, hierarchical view of the cluster, 
grouping nodes by proximity for optimized scheduling and diagnostics.​
 

●​ NIC Connectivity: If probes stop flowing between 
NICs for a defined interval (e.g., 1 second), the agent 
flags a disconnection and raises an alert 
immediately. ​
 

●​ Network Performance: When probes experience 
increased latency due to congestion or degraded 
paths, those delays are recorded and, if thresholds 
are crossed, trigger alerts. 

This continuous monitoring allows Clockwork to proactively detect link failures, flapping ports, or 
congestion hotspots—even on idle paths. All probe data feeds into a real-time, fleet-wide map of the 
network, enabling automated response. 

https://www.usenix.org/system/files/conference/nsdi18/nsdi18-geng.pdf
https://www.usenix.org/system/files/nsdi19-geng.pdf


 

Unlike traditional systems that rely on periodic health checks or coarse metrics, Clockwork’s probe 
mesh acts like a live EKG for the data center, delivering always-on visibility and enabling the software 
fabric to adapt dynamically—keeping GPUs productive and training jobs resilient, even during transient 
network faults. 

Workload Monitoring (In-Band Telemetry) 

In addition to out-of-band probing, Clockwork instruments in-band telemetry by embedding lightweight 
instrumentation directly into live AI workloads. This is enabled via a custom NCCL/RCCL plugin (or a 
message-aware Libibverbs plugin), which Clockwork provides as a shared-object library. NCCL 
dynamically loads this plugin at runtime using standard environment variables—no changes to user 
code are required. 

Thanks to Clockwork’s sub-microsecond global clock synchronization across NICs, Clockwork can 
measure latency and performance directly in the data path with extreme high precision without 
requiring specialized hardware or vendor-specific telemetry hooks. 

The plugin integrates at the Collective Transport Layer, 
using the InfiniBand verbs API to manage data queue 
pairs (QPs), tags data packets and captures 
queue-pair–level and chunk-level metrics, including: 

●​ OWDs between GPUs​
 

●​ Per-collective throughput​
 

●​ ECN markings​
 

●​ Real-time flow composition between GPU pairs​
 

This approach gives deep, real-time visibility into the behavior of running jobs across the fabric. 
Infrastructure and AI engineers gain fine-grained, per-job metrics alongside fleet-wide insights, enabling 
rapid detection of anomalies like congestion or uneven throughput. The result: more consistent 
performance, faster job completion, and fewer surprises. 

Example Use Cases 

1. Real-Time Monitoring of Connectivity and Link Flaps 

Clockwork Fleet Monitoring (out-of-band) continuously monitors both Front-End and Back-End network 
connectivity, detecting link flaps and failures in real time and raising alerts.  

●​ Back-End Network: In this example, NIC 1 on host se-h3-20-gpu is repeatedly flapping between 
connected and disconnected states. When the NIC fails to send or receive probe traffic, it is 



 

marked unhealthy (shown in gray). Once probe flow resumes, the NIC status returns to healthy 
(green).​

 

 

●​ Front-End Network: At approximately 4:23 PM, node se-h2-27-gpu became unable to probe its 
peers on the front-end network. This loss of connectivity was immediately flagged by probes.​

 

 

2. Detecting Network Bottlenecks in the Fabric 

In this example, the all_reduce_perf workload was run twice.  
Using Clockwork Workload monitoring which measures both 
One-Way Delays (OWDs) and throughput at the granularity of 
a Queue Pair (QP). 

●​ Green run: Achieved ~360 Gbps​
 

●​ Orange run: Dropped to ~190 Gbps​
 

The performance drop in the second run was caused by a 
significant delay on one specific flow (94 µs), while all other 
flows remained low-latency (~4 µs). This imbalance reveals 
that traffic contention occurred on a particular spine port, 
resulting in uneven load distribution and degraded job 
throughput. 

 



 

3. Detect & Resolve Workload Misconfigurations 

By combining Fleet Monitoring (out-of-band) and Workload Monitoring (in-band), Clockwork can 
surface subtle misconfigurations that are otherwise hard to catch. 

Diagnosis: A mismatch was detected between 
out-of-band and in-band one-way delays at the Queue Pair 
level. Further investigation revealed the workload was 
mistakenly using RoCEv1 instead of RoCEv2.RoC 

Ev2" 

 

Remedy: After reconfiguring the workload to use RoCEv2, 
throughput stabilized and consistently reached line rate 
(~400 Gbps), all Queue Pair delays are now around 6us as 
shown in the accompanying screenshot. 
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